
Protégé High Level Design

Outline

 What is Protégé
 Writing Applications on Protégé
 Protégé Design
 Recent NCI Work
 Future Directions

Introducing Protégé

 Graphical Ontology Editor
 Pluggable Tool

 Tab,Slot, Project, Backend, Import, Export
 Plugin Support is basis for many

applications
 Application Component

Graphical Ontology Editor

Pluggable Tool

What is a Plugin?

 Extension to Protégé
 Requires no source code modifications
 Loaded and managed by system
 Changes way Protégé works

 Implementation of a Java interface
 Packaged as jars
 Installed in subdirectory of Protégé

plugins

How Plugins Work

 Protégé, at startup, loads jars directly
below plugins subdirectory

 Jars contain description of contained
plugins
 meta_inf/manifest.mf

 System creates instances of plugin
 System calls plugin methods when

needed “Don’t call us, we’ll call you.”

Types of Plugins

 TabWidget
 SlotWidget
 KnowledgeBaseFactory (“Backend”)
 ProjectPlugin
 ExportPlugin
 CreateProjectPlugin

Plugin: TabWidget

 What is it?
 Large piece of screen real-estate
 Can interact with domain KB

browse, change, delete, corrupt
NCIEdit Tab

 What are its limitations?
 Difficult to supplement or even interact

with other tabs

Plugin: SlotWidget

 What is it?
 UI Control which allows the user to display

and modify a slot value
 Follows a protocol for hiding interaction KB

 What are its limitations?
 Works best with a single slot

Plugin Type:
KnowledgeBaseFactory
 What is it?

 Replacement for standard storage
mechanisms

 Database
 External server
 …

 Allows for parsing of different file formats
 What are its limitations?

 Difficult to manipulate UI
 Implementations tend to be buggy

Plugin Type: ProjectPlugin

 What is it?
 Code that executes when “things happen”

to a project (create, load, display, close,
etc)

 Get access to project, view, menu bar, tool
bar and can modify them as you like

 Example
 Changes Plugin which tracks changes as

they occur.

Plugin Type: ExportPlugin

 What is it?
 Code that saves (part of) a knowledge-

base in any format to somewhere else
 files, servers, web, …

 No change of the current backend
 No guarantee of “lossless round trip”
 No “live” connection

Plugin Type: ImportPlugin

 What is it?
 Code that creates a knowledge-base from

information from somewhere else
 files, servers, web, …

 No change of the current backend
 No guarantee of “lossless round trip”
 No “live” connection

Protégé as an Application Component

 Tab Plugin (NCI Edit Tab)
 Standalone Application
 Distributed Application

Protégé Tab as An Application

 Description
 Create a custom tab plugin
 Configure Protégé to just display your tab

 Pros
 Simple
 Great for few users
 Iteration (change of model, data, app) is very easy

 Cons
 Protégé must be installed
 Difficult to permanently disable standard functions
 Stuck with Protégé menus, toolbar, etc
 No security on underlying model and data
 User really should know something about Protégé

Standalone Application

 Description
 Write standalone Java Application
 Call into the Protégé API for knowledge base access
 Often evolves from a Tab

 Pros
 No need to install Protégé
 User doesn’t need to know anything about Protégé
 Underlying model and data are as secure as you want
 Can use some or none of the Protégé UI, as desired

 Forms for classes and instances are available
 Some tabs will work

 Cons
 Iteration somewhat more difficult than as Tab

Network Solutions

 Applets
 Java WebStart
 Servlets and Java Server Pages
 Protégé RMI server
 Custom server

Protégé Architecture

Server-Client Architecture

Protégé Performance
Enhancements
 Slow Performance When

 Protégé Server-Client
 Database Backend
 OWL
 Complex Ontology

 Focus on Server-Client and OWL

Main Issues

 Protégé Frames
 Granularity of server locks
 Caches were slow
 Caches were incorrect
 Role of Transactions

 Protégé OWL
 Inefficient code
 Design Decisions
 Role of Inference

Basic Server-Client Problem

CPUs are
mostly idle…

Solution + New Problem

Experiments and Approaches

 Only Provide what Client Requests
 Fast at low latency
 Unacceptable Otherwise

 Return Requested Results Immediately & provide
other results later
 Separate server thread devoted to caching results
 Current Solution

 Enhanced with OWL State Machine
 Anticipates display of OWL expressions

Pitfalls of Precache Thread

 Small tests show
 Server generally only gets a few seconds

behind
 Some extreme cases gets two minutes

behind (these are extreme cases)
 Server is usually idle.

 Only need to scale to ten or so users.

Server Can’t Keep Up

Pitfalls of Precache Thread

 Issue is collisions requesting knowledge
base lock

 Assume knowledge base calls take about
2ms

 On average, collision will occur when
precache thread is halfway through its
computation.

 Increase knowledge base calls to 3ms
 With network latency (80ms)

 Change from 82ms to 83ms.

Server Response is Slower

Precaching slows the server?

Pitfalls of Precache Thread

 Use of bandwidth
 Generally does not use too much but
 There are spikes
 Short but at capacity of network

 Based on OS X Activity Monitor
 Impact Unknown
 Compressing Sockets?

Pitfalls of Precache Thread
Deferred Results are Needed Now

Role of Transactions

Begin Transaction
do really tricky thing

Commit Transaction
Or Catch Failure and Rollback

Role of Transactions

 Rollback on failure
 Protection from conflicting changes

 Read Uncommitted
 Protection from premature update

 Read Committed
 Protection from others updates

 Repeatable Read
 Atomic Operations

 Serializable

Caching and Transactions

 Read Uncommitted
 One Cache

 Read Committed
 My writes are not visible to others

 Repeatable Read
 Start Transaction ⇒ Client Cache Emptied

 Serializable
 Can’t anticipate clients needs during transaction

Caching and Transactions

 At Repeatable Read
 Operation takes 40 seconds
 CPU speed makes little difference

 At Read Committed
 Operation takes 5 seconds
 CPU speed is important

 Recommendation to NCI
 Read Committed

 Cache hit rate is 99% (?!!)

OWL Overhead

Change From
Human to Bird

